DL n%-2: à remettre mercredi 5 mars 2008

Mécanique du point. Exemples de dynamique stellaire et galactique

Données numériques :

Constante de gravitation	$G = 6,7 \times 10^{-11}$ unité du syst. international (S.I.)
Constante de gravitation	•
Masse du soleil	$M_s = 2 \times 10^{30} kg$
Rayon du soleil	$R_s = 7 \times 10^8 \text{m}$
Masse de la terre	$m_T = 5,97 \times 10^{24} \text{ kg}$
Rayon de la terre	$R_T = 6,4 \times 10^6 \text{m}$
Accélération de la pesanteur au niveau du sol	$g = 9, 8 m \cdot s^{-2}$
Distance moyenne terre-soleil	$d = 1,5 \times 10^{11} \text{m}$
Vitesse de la lumière dans le vide	$c = 3 \times 10^8 \text{m} \cdot \text{s}^{-1}$
Année-lumière (notée al)	$1 \text{ al} \approx 10^{16} \text{m}$

I.A - Préliminaire

On considère le mouvement circulaire d'une planète, de masse m, en orbite à la distance r du soleil sous la seule action de la force gravitationnelle du soleil.

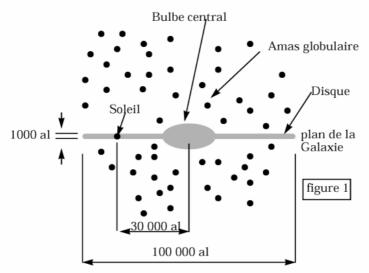
- I.A.1) Exprimer cette force gravitationnelle en fonction de G, M_s , m et r. En déduire la dimension physique de la constante G en fonction des seules unités de base du système S.I.
- I.A.2) Établir une relation liant la période orbitale T du mouvement de la planète au rayon r et aux paramètres G et M_s . On obtient ainsi une expression simplifiée de la troisième loi dite de Kepler.

I.B - Application

Notre galaxie, dont la trace sur le ciel nocturne est appelée "voie lactée", est un système formé d'un grand nombre d'étoiles animées autour de leur centre de masse commun de mouvements orbitaux supposés analogues à ceux des planètes autour du soleil. La figure 1 représente le schéma de notre galaxie vue en coupe avec ses trois parties caractéristiques : bulbe central, disque, halo sphérique d'amas d'étoiles (appelé amas globulaire). Le soleil est localisé au niveau du disque galactique, à une distance $D \approx 30~000~{\rm al}$ du coeur de la galaxie ; il décrit autour du noyau galactique une orbite circulaire en une période $T_s = 250 \times 10^6 {\rm années}$ soit $T_s = 7,88 \times 10^{15} {\rm s}$.

LYCÉE DE KERICHEN MP-Physique-chimie Devoir libre n®-2

On supposera que toutes les masses confinées à l'intérieur d'une sphère de rayon D agissent comme si elles se trouvaient au centre de la galaxie.



- I.B.1) Donner une estimation grossière de la masse M de la galaxie, en kilogrammes, puis en unités de masse solaire M_s .
- I.B.2) Comparer le nombre M/M_s à l'évaluation $N=6\times 10^{11}$ déduite par les astronomes à partir d'études de rotation de notre galaxie. Interpréter simplement l'écart entre ces deux valeurs.
- I.B.3) En admettant que la masse moyenne d'une étoile est de l'ordre de la masse du soleil M_s , donner, pour l'ensemble de la galaxie (bulbe central, disque, halo sphérique : figure 1) l'ordre de grandeur de la densité d'étoiles, exprimée en nombre n_0 d'étoiles par année-lumière.

I.C - Généralisation de la troisième loi de Kepler

On considère deux étoiles (supposées "ponctuelles") E_1 et E_2 d'un "système binaire", de masses respectives m_1 et m_2 ; on néglige toute interaction autre que l'interaction gravitationnelle qui existe entre les deux étoiles (on suppose donc que les deux étoiles forment un système isolé) et on appelle C leur centre de masse. Les deux étoiles E_1 et E_2 décrivent des orbites circulaires de centre C et de rayons respectifs e_1 et e_2 ; on pose e_1 et e_2 et e_3 et e_4 et e_4 et e_5 et e_6 et e_7 et e_8 et e_8 et e_8 et e_9 et

- I.C.1) Expliquer pourquoi les deux étoiles ont la même période orbitale T et montrer que $r_1/r_2 = m_2/m_1$.
- I.C.2) Montrer que la période orbitale T est donnée par l'expression

$$T = 2\pi \sqrt{\frac{d^3}{G(m_1 + m_2)}}.$$

Que devient cette expression si $m_1 \gg m_2$? Comparer avec le résultat de la question I.A.2.

I.C.3) Application numérique : deux étoiles Alpha et Bêta, décrivent deux orbites circulaires de rayons respectifs $r_1 = 1,00 \times 10^9 \,\mathrm{km}$ et $r_2 = 5,0 \times 10^8 \,\mathrm{km}$ avec une période orbitale T = 44,5 années . Déterminer les masses m_1 et m_2 de ces deux étoiles en kilogrammes, puis en unités de masse solaire M_s .

JLH 13/03/2008 Page 2 sur 4

LYCÉE DE KERICHEN MP-Physique-chimie Devoir libre n®-2

I.D - Vitesse de libération

- I.D.1) Exprimer l'énergie totale initiale E_0 d'un satellite artificiel de masse m lancé avec une vitesse v_0 à partir de la surface d'une planète (à symétrie sphérique) de rayon R et de masse M. Exprimer de même l'énergie totale E du satellite en un point quelconque en fonction de la distance r de ce point au centre de la planète et de la vitesse v du satellite en ce point.
- I.D.2) En déduire, en l'absence de frottement, la vitesse minimale v_I , appelée vitesse de libération, qui doit être "initialement" communiquée au satellite pour qu'il puisse s'éloigner indéfiniment de la planète. On exprimera v_I en fonction de G, M et R.
- I.D.3) Application numérique :
 - Cas d'un satellite terrestre : exprimer la vitesse de libération de v_{IT} en fonction du rayon terrestre R_T et de l'accélération de la pesanteur g au niveau du sol. Faire l'application numérique. Pourrait-on communiquer une telle vitesse à un satellite au niveau du sol ?
 - Cas d'une particule au voisinage du soleil : déterminer la valeur numérique de "la vitesse de libération" v_{IS} d'un ion produit à la surface du soleil.
- I.D.4) Dans le cas du soleil, exprimer la vitesse de libération v_{IS} en fonction de la constante de gravitation G, du rayon R_S du soleil et de la masse volumique moyenne ρ_S du soleil. Quelle indication peut-on en déduire pour d'autres étoiles de structure interne comparable ?

I.E - Étoile de Laplace

En 1798, dans "Exposition du Système du Monde", Laplace imagine un astre de même masse volumique moyenne que la terre, soit ρ_T , et de diamètre égal à 250 fois celle du soleil. Quelle est la vitesse de libération correspondante à partir de la surface de l'astre ? Pourquoi Laplace conclut-il qu'un tel astre empêche la lumière de quitter sa surface, le rendant ainsi invisible ? Dans la terminologie actuelle, celle de la Relativité Générale, un tel "objet" est décrit comme un "trou noir".

I.F - Rayon de Schwarzschild

On admet qu'un corps de masse M agit comme un trou noir si son rayon R est inférieur à un certain rayon critique R_C appelé rayon de Schwarzschild, défini par une vitesse de libération à la surface de ce corps égale à la vitesse de la lumière dans le vide, soit $v_I = c$.

- I.F.1) Exprimer R_C en fonction de G, M et c.
- I.F.2) Application numérique : calculer le rayon de Schwarzschild $R_{\mathcal{C}}$ dans le cas du soleil, puis de la terre.
- I.F.3) Exprimer la force gravitationnelle F_{TN} exercée par un trou noir sur un objet en fonction de la masse m de l'objet, de sa distance r au centre du trou noir, du rayon de Schwarzschild R_C du trou noir et de c.

Application numérique : calculer F_{TN} pour R_C = 8,9 mm , m = 3 kg , r = 6000 km .

JLH 13/03/2008 Page 3 sur 4

LYCÉE DE KERICHEN MP-Physique-chimie Devoir libre n®-2

I.F.4) Calculer l'accélération de la pesanteur g_{TN} au niveau de la sphère de Schwarzschild en fonction R_C et c.

Application numérique : calculer g_{TN} pour $R_C = 8,9$ mm .

I.F.5) On appelle "sphère des événements" la sphère de rayon R_C . Justifier qualitativement le choix de ce terme.

I.G - Application au cœur de notre galaxie

Des astronomes ont observé un petit objet massif au centre de notre galaxie. Un anneau de matière est en orbite circulaire autour de cet objet massif. L'anneau a un diamètre de 15 al et sa vitesse orbitale est voisine de 200 km \cdot s^{-1} .

- I.G.1) En supposant la masse de l'objet massif très supérieure à celle de l'anneau, déterminer la masse M_{OM} de cet objet massif, en kilogrammes, puis en unité de masse solaire (cf question I.A.2).
- I.G.2) L'observation des étoiles, aussi bien que les théories modernes de leur structure, montrent qu'il est pratiquement impossible pour une étoile simple, d'avoir une masse supérieure à environ 50 masses solaires. L'objet massif précédent peut-il être une étoile ?
- I.G.3) La plupart des astronomes pensent actuellement que l'objet massif situé au centre de notre galaxie, et dont la masse M_{OM} a été déterminée à la question I.G.1, est un trou noir. S'il en est ainsi, quel est son rayon de Schwarzschild R_{C} et comparer la valeur numérique ainsi obtenue à la distance moyenne d entre la terre et le soleil.
- I.G.4) Un candidat privilégié au statut de trou noir est Cygnus X-1, ainsi nommée parce qu'elle fut la première source de rayons X découverte dans la constellation du Cygne. Or, Cygnus X-1 est un système binaire localisé à 8000 al de la terre. Les deux objets de ce système sont respectivement une étoile supergéante bleue, notée HDE226868 et un objet compact non directement "visible" identifié à un trou noir. La période orbitale de Cygnus X-1 est T=5,6 jours . La masse de l'étoile supergéante HDE226868 est estimée à $m_1=30\ M_s$ et celle du trou noir à $m_2=6\ M_s$. En supposant les orbites circulaires, déterminer les valeurs numériques du rayon de l'orbite et la vitesse orbitale de chaque objet. Comparer ces résultats au rayon orbital d et à la vitesse orbitale v_T de la terre dans son mouvement autour du soleil.

JLH 13/03/2008 Page 4 sur 4