

Vaporisation irréversible sous vide

1 - On introduit une masse m d'eau liquide dans un récipient de volume V initialement vide. L'ensemble est maintenu à la température Celsius $t_{100} = 100$ °C. L'eau est prise initialement à la pression $p_0 = 1$ bar, égale à la pression de vapeur saturante à la température t_{100} .

En assimilant la vapeur d'eau à un gaz parfait, déterminer la masse maximale d'eau m_{max} qui peut être totalement vaporisée dans ces conditions.

Valeurs numériques: $M_{\text{H},0} = 18 \text{ g} \cdot \text{mol}^{-1}$; $R = 8,314 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$; V = 1,00 L.

2 - Pour $m > m_{\text{max}}$, on notera x_{vap} le titre en vapeur à l'équilibre. Calculer la variation d'entropie du système dans cette transformation.

On notera $L_{\rm vap}$ la chaleur latente massique de vaporisation de l'eau à $100^{\circ}{\rm C}$.

Valeurs numériques : $L_{\text{vap}} = 2,25 \text{ kJ} \cdot \text{g}^{-1}$; m = 1 g.

3 - Pour cette transformation, calculer l'entropie échangée $S_{\text{éch}}$ avec le milieu extérieur ainsi que l'entropie créée S_{irr} du fait de l'irréversibilité du processus.